Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Ultrasound Med Biol ; 47(8): 2090-2096, 2021 08.
Article in English | MEDLINE | ID: covidwho-1213550

ABSTRACT

Coronavirus disease 2019 (COVID-19) compromises the lung in large numbers of people. The development of minimally invasive methods to determine the severity of pulmonary extension is desired. This study aimed to describe the characteristics of sequential lung ultrasound and to test the prognostic usefulness of this exam in a group of patients admitted to the hospital with COVID-19. We prospectively evaluated patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection admitted to our hospital between April and August 2020. Bedside lung ultrasound exams were performed at three time points: at inclusion in the study, after 48 h and on the seventh day of follow-up. Lung ultrasound scores were quantified according to the aeration loss in each of eight zones scanned. Sixty-six participants were included: 42 (63.6%) in the intensive care unit and 24 (36.3%) in the ward. Lung ultrasound scores were higher in participants admitted to the intensive care unit than in those admitted to the ward at the time of inclusion (16 [13-17] vs. 10 [4-14], p < 0.001), after 48 h (15.5 [13-17] vs. 12.5 [8.2-14.7], p = 0.001) and on the seventh day (16 [14-17] vs. 7 [4.5-13.7], p < 0.001) respectively. Lung ultrasound score measured at the time of inclusion in the study was independently associated with the need for admission to the intensive care unit (odds ratio = 1.480; 95% confidence interval, 1.093-2.004; p = 0.011) adjusted by the Sequential Organ Failure Assessment score.


Subject(s)
COVID-19/diagnosis , Lung/diagnostic imaging , SARS-CoV-2 , Ultrasonography/methods , Aged , Brazil , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Severity of Illness Index
2.
EMBO Mol Med ; 12(8): e12697, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-434202

ABSTRACT

Baricitinib is an oral Janus kinase (JAK)1/JAK2 inhibitor approved for the treatment of rheumatoid arthritis (RA) that was independently predicted, using artificial intelligence (AI) algorithms, to be useful for COVID-19 infection via proposed anti-cytokine effects and as an inhibitor of host cell viral propagation. We evaluated the in vitro pharmacology of baricitinib across relevant leukocyte subpopulations coupled to its in vivo pharmacokinetics and showed it inhibited signaling of cytokines implicated in COVID-19 infection. We validated the AI-predicted biochemical inhibitory effects of baricitinib on human numb-associated kinase (hNAK) members measuring nanomolar affinities for AAK1, BIKE, and GAK. Inhibition of NAKs led to reduced viral infectivity with baricitinib using human primary liver spheroids. These effects occurred at exposure levels seen clinically. In a case series of patients with bilateral COVID-19 pneumonia, baricitinib treatment was associated with clinical and radiologic recovery, a rapid decline in SARS-CoV-2 viral load, inflammatory markers, and IL-6 levels. Collectively, these data support further evaluation of the anti-cytokine and anti-viral activity of baricitinib and support its assessment in randomized trials in hospitalized COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Artificial Intelligence , Azetidines/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/pharmacology , Adult , Aged , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Azetidines/pharmacokinetics , Azetidines/therapeutic use , COVID-19 , Cytokines/antagonists & inhibitors , Drug Evaluation, Preclinical , Drug Repositioning , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukocytes/drug effects , Liver , Male , Middle Aged , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Purines , Pyrazoles , SARS-CoV-2 , Spheroids, Cellular/drug effects , Spheroids, Cellular/virology , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL